Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
ACS Chem Biol ; 16(11): 2581-2594, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34726906

RESUMO

Selective death of midbrain dopaminergic neurons is a hallmark pathology of Parkinson's disease (PD), but the molecular mechanisms that initiate the cascade of events resulting in neurodegeneration in PD remain unclear. Compelling evidence suggests that dysregulation of dopamine (DA) induces neuronal stress and damage responses that are operative processes in striatal degeneration preceding PD-like symptoms. Improper DA sequestration to vesicles raises cytosolic DA levels, which is rapidly converted into electrophilic dopaquinone species (DQs) that react readily with protein nucleophiles forming covalent modifications that alter the native structure and function of proteins. These so-called DA-protein adducts (DPAs) have been reported to play a role in neurotoxicity, and their abundance with respect to neurodegeneration has been linked to clinical and pathological features of PD that suggest that they play a causal role in PD pathogenesis. Therefore, characterizing DPAs is a critical first step in understanding the susceptibility of midbrain dopaminergic neurons during PD. To help achieve this goal, we report here a novel DA-mimetic (DAyne) containing a biorthogonal alkyne handle that exhibits a reactivity profile similar to DA in aqueous buffers. By linking DPAs formed with DAyne to a fluorescent reporter molecule, DPAs were visualized in fixed cells and within lysates. DAyne enabled global mapping of cellular proteins affected by DQ modification and their bioactive pathways through enrichment. Our proteomic profiling of DPAs in neuronal SH-SY5Y cells indicates that proteins susceptible to DPA formation are extant throughout the proteome, potentially influencing several diverse biological pathways involved in PD such as endoplasmic reticulum (ER) stress, cytoskeletal instability, proteotoxicity, and clathrin function. We validated that a protein involved in the ER stress pathway, protein disulfide isomerase 3 (PDIA3), which was enriched in our chemoproteomic analysis, is functionally inhibited by DA, providing evidence that dysregulated cellular DA may induce or exacerbate ER stress. Thus, DAyne provided new mechanistic insights into DA toxicity that may be observed during PD by enabling characterization of DPAs generated reproducibly at physiologically relevant quinone exposures. We anticipate our design and application of this reactivity-based probe will be generally applicable for clarifying mechanisms of metabolic quinone toxicity.


Assuntos
Catecolaminas/metabolismo , Dopamina/metabolismo , Proteoma , Dopamina/toxicidade , Neurônios Dopaminérgicos/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Oxirredução , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteômica/métodos
2.
Eur J Pharm Biopharm ; 167: 189-200, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333085

RESUMO

Both dopamine (DA) loaded Solid Lipid Nanoparticles (SLN) and liposomes (Lip), designed for intranasal administration of the neurotransmitter as an innovative Parkinson disease treatment, were already characterized in vitro in some extent by us (Trapani et al., 2018a and Cometa et al., 2020, respectively). Herein, to gain insight into the structure of SLN, X-ray Photoelectron Spectroscopy Analysis was carried out and DA-SLN (SLN 1) were found to exhibit high amounts of the neurotransmitter on the surface, whereas the external side of Glycol Chitosan (GCS) containing SLN (SLN 2) possessed only few amounts. However, SLN 2 were characterized by the highest encapsulation DA efficiency (i.e., 81%). Furthermore, in view of intranasal administration, mucoadhesion tests in vitro were also conducted for SLN and Lip formulations, evidencing high muchoadesive effect exerted by SLN 2. Concerning ex-vivo studies, SLN and Lip were found to be safe for Olfactory Ensheathing Cells and fluorescent SLN 2 were taken up in a dose-dependent manner reaching the 100% of positive cells, while Lip 2 (chitosan-glutathione-coated) were internalised by 70% OECs with six-times more lipid concentration. Hence, SLN 2 formulation containing DA and GCS may constitute interesting formulations for further studies and promising dosage form for non-invasive nose-to-brain neurotransmitter delivery.


Assuntos
Dopaminérgicos/administração & dosagem , Dopamina/administração & dosagem , Portadores de Fármacos/química , Lipossomos , Nanopartículas , Adesividade , Administração Intranasal , Animais , Células Cultivadas , Quitosana/química , Dopamina/farmacocinética , Dopamina/toxicidade , Dopaminérgicos/farmacocinética , Dopaminérgicos/toxicidade , Relação Dose-Resposta a Droga , Lipídeos/química , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Espectroscopia Fotoeletrônica
3.
ACS Appl Mater Interfaces ; 13(29): 33915-33925, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279905

RESUMO

Macrophage accumulation is central to the pathogenesis of atherosclerotic plaques. Reducing macrophages in plaques is an appealing approach to attenuate the development of atherosclerosis. Chemodynamic therapy, specifically inhibiting hydrogen peroxide (H2O2)-rich cells in slightly acidic microenvironment, has emerged as a new method in tumor treatment. Herein, we manufactured ultrasmall dopamine-modified hyaluronic acid (HD)-stabilized Fe(III)-tannic acid nanoparticles (HFTNPs). HFTNPs can specifically accumulate in inflammatory macrophages in atherosclerotic plaques, provide brighter magnetic resonance images, promote reactive oxygen species (ROS) generation, and induce the death of inflammatory macrophages without damaging normal cells and tissues. In conclusion, HFTNPs have a tremendous potential as safe and effective diagnostic and therapeutic reagents for atherosclerosis.


Assuntos
Meios de Contraste/uso terapêutico , Compostos Férricos/uso terapêutico , Nanopartículas/uso terapêutico , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/tratamento farmacológico , Taninos/uso terapêutico , Animais , Catálise , Meios de Contraste/química , Meios de Contraste/toxicidade , Dopamina/análogos & derivados , Dopamina/toxicidade , Compostos Férricos/química , Compostos Férricos/toxicidade , Ácido Hialurônico/química , Ácido Hialurônico/toxicidade , Radical Hidroxila/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/toxicidade , Células RAW 264.7 , Taninos/química , Taninos/toxicidade
4.
Food Chem Toxicol ; 154: 112313, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082047

RESUMO

We suggested that selenium-dependent glutathione peroxidase (GPx) plays a protective role against methamphetamine (MA)-induced dopaminergic toxicity. We focused on GPx-1, a major selenium-dependent enzyme and constructed a GPx-1 gene-encoded adenoviral vector (Ad-GPx-1) to delineate the role of GPx-1 in MA-induced dopaminergic neurotoxicity. Exposure to Ad-GPx-1 significantly induced GPx activity and GPx-1 protein levels in GPx-1-knockout (GPx-1-KO) mice. MA-induced dopaminergic impairments [i.e., hyperthermia; increased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) DNA-binding activity; and decreased dopamine levels, TH activity, and behavioral activity] were more pronounced in GPx-1-KO mice than in WT mice. In contrast, exposure to Ad-GPx-1 significantly attenuated MA-induced dopaminergic loss in GPx-1-KO mice. The protective effect exerted by Ad-GPx-1 was comparable to that exerted by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor against MA insult. Consistently, GPx-1 overexpression significantly attenuated MA dopaminergic toxicity in mice. PDTC did not significantly impact the protective effect of GPx-1 overexpression, suggesting that interaction between NF-κB and GPx-1 is critical for dopaminergic protection. Thus, NF-κB is a potential therapeutic target for GPx-1-mediated dopaminergic protective activity. This study for the first time demonstrated that Ad-GPx-1 rescued dopaminergic toxicity in vivo following MA insult. Furthermore, GPx-1-associated therapeutic interventions may be important against dopaminergic toxicity.


Assuntos
Dependovirus/genética , Vetores Genéticos , Glutationa Peroxidase/genética , Metanfetamina/toxicidade , NF-kappa B/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Dopamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glutationa Peroxidase GPX1
5.
Int J Biol Macromol ; 183: 2142-2151, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34048838

RESUMO

As a kind of natural protein derived material, gelatin has been widely used in the preparation of medical hydrogels due to its good biocompatibility, non-immunogenicity and the ability of promoting cell adhesion. Functionalization of gelatin-based hydrogels is a hot topic in research and its clinic application. Herein, a novel gelatin-based adhesive hydrogel was prepared via mussel-inspired chemistry. Gelatin was firstly functionalized by dopamine to form dopamine grafted gelatin (GelDA). After the mixture with 1,4-phenylenebisboronic acid and graphene oxide (GO), the GelDA/GO hydrogels were obtained by H2O2/HRP (horseradish peroxidase) catalytic system. Based on the self-healing and tissue adhesion of the hydrogels, the hemostatic property has been exhibited in the rat hepatic hemorrhage model. Additionally, the incorporation of GO endowed conductivity and enhanced the mechanical property of GelDA/GO hydrogels. The electromyography (EMG) signals of finger movement were successfully monitored by using hydrogel as the adhesive electrodes of EMG monitor. L929 cell experiments showed that the hydrogels had good cytocompatibility. The results indicated the potential application of GelDA/GO hydrogels in tissue adhesives, wound dressings, and wearable devices.


Assuntos
Dopamina/farmacologia , Gelatina/farmacologia , Hemostasia/efeitos dos fármacos , Hemostáticos/farmacologia , Adesivos Teciduais/farmacologia , Adesividade , Animais , Ácidos Borônicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dopamina/química , Dopamina/toxicidade , Condutividade Elétrica , Desenho de Equipamento , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Gelatina/química , Gelatina/toxicidade , Grafite/química , Hemostáticos/química , Hemostáticos/toxicidade , Humanos , Hidrogéis , Camundongos , Ratos , Sus scrofa , Adesivos Teciduais/química , Adesivos Teciduais/toxicidade , Dispositivos Eletrônicos Vestíveis
6.
Biomed Pharmacother ; 136: 111250, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33450487

RESUMO

BACKGROUND: Exacerbations of chronic heart failure (CHF) are often treated with catecholamines to provide short term inotropic support, but this strategy is associated with long-term detrimental hemodynamic effects and increased ventricular arrhythmias (VA), possibly related to increased heart rate (HR). We hypothesized that ivabradine may prevent adverse effects of short-term dopamine treatment in CHF. METHODS: Rats with post-myocardial infarction CHF received 2-week infusion of saline, dopamine(D), ivabradine(I) or D&I; cardiac function was assessed using echocardiography and pressure-volume loops while VA were assessed using telemetric ECG recording. Expression of HCN4, a potentially proarrhythmic channel blocked by ivabradine, was assessed in left ventricular (LV) myocardium. HCN4 expression was also assessed in human explanted normal and failing hearts and correlated with VA. FINDINGS: Dopamine infusion had detrimental effects on hemodynamic parameters and LV remodeling and induced VA in CHF rats, while ivabradine completely prevented these effects. CHF rats demonstrated HCN4 overexpression in LV myocardium, and ivabradine and, unexpectedly, dopamine prevented this. Failing human hearts also exhibited HCN4 overexpression in LV myocardium that was unrelated to patient's sex, CHF etiology, VA severity or plasma NT-proBNP. INTERPRETATION: HR reduction offered by ivabradine may be a feasible strategy to extract benefits of inotropic support in CHF exacerbations, avoiding detrimental effects on CHF biology or VA. Ivabradine may offer additional beneficial effects in this setting, going beyond pure HR reduction, however prevention of ventricular HCN4 overexpression is unlikely to play a major role.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/prevenção & controle , Dopamina/toxicidade , Insuficiência Cardíaca/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ivabradina/farmacologia , Miocárdio/metabolismo , Canais de Potássio/metabolismo , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Proteínas Musculares/metabolismo , Ratos Wistar , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
7.
Neurotoxicology ; 82: 108-118, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248189

RESUMO

The prominent protective effects in diverse neuron injury paradigms exerted by cannabinoids and in particular their endogenously produced species render the endocannabinoid system a promising molecular target in the treatment of neurodegenerative diseases. However, the effects of individual endocannabinoids in human cells remain poorly investigated. Neural derivatives of human induced pluripotent stem cells (iPSC) offer unique opportunities for studying the neuroprotective compounds and development of patient-specific treatment. For the first time the cytotoxic and neuroprotective effects endocannabinoids N-arachidonoyl dopamine (N-ADA) and N-docosahexaenoyl dopamine (N-DDA) were assessed in human neural progenitors and dopamine neurons derived from iPSCs of healthy donors and patients with Parkinson's disease. While the short-term treatment with the investigated compounds in 0.1-10 µM concentration range exerted no toxicity in these cell types, the long-term exposure to 0.1-5 µM N-ADA or N-DDA reduced the survival of human neural progenitors. At the same time, both N-ADA and N-DDA protected neural progenitors and terminally differentiated neurons both from healthy donors and patients with Parkinson's disease against oxidative stress induced by hydrogen peroxide. The observed dramatic difference in the mode of action of N-acyl dopamines points on the possible existence of novel pathogenic mechanism of neurodegeneration induced by prolonged uncompensated production of these substances within neuronal tissue and should also be considered as a precaution in the future development of N-acyl dopamine-based therapeutic drugs.


Assuntos
Ácidos Araquidônicos/farmacologia , Dopamina/análogos & derivados , Endocanabinoides/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Ácidos Araquidônicos/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dopamina/farmacologia , Dopamina/toxicidade , Endocanabinoides/toxicidade , Imunofluorescência , Humanos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
8.
Biotechnol Appl Biochem ; 68(6): 1501-1507, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33146428

RESUMO

Parkinson's disease (PD) is one of the most common central nervous system (CNS) degenerative disease and is characterized by a progressive loss of midbrain substantia nigra dopamine (DA) neurons. Dendrobium nobileLindl alkaloid (DNLA) is an active component extracted from D. nobile Lindl, which is a traditional Chinese herb. The various pharmacological effects of D. nobile are beneficial for human health. Recently, DNLA-mediated neuroprotective effects have been reported. However, the neuroprotection of DNLA on 6-hydroxydopamine (6-OHDA)-induced DA neurotoxicity is still unknown. This study aimed to explore the neuroprotective effects of DNLA on DA neurotoxicity induced by 6-OHDA. In PD rat model, continuous intragastric administration of DNLA (20 mg/kg) for 7 days significantly ameliorated 6-OHDA-induced DA neurons loss in the midbrain substantia nigra. In addition, primary rat midbrain neuron-glia cocultures were used to explore the mechanisms underlying DNLA-related DA neuroprotection. The studies on neuron-glia cocultures revealed that neuroprotective effects of DNLA (2.5 ng/mL) were mediated by inhibiting the release of proinflammatory cytokines. Taken together, DNLA holds neuroprotective effect on 6-OHDA-induced neurons neurodegeneration by selectively inhibiting the production of proinflammatory factors and could be a potential compound for PD treatment.


Assuntos
Alcaloides/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/antagonistas & inibidores , Alcaloides/administração & dosagem , Animais , Dopamina/toxicidade , Masculino , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Oxidopamina/farmacologia , Ratos , Ratos Sprague-Dawley
9.
J Mater Chem B ; 8(36): 8282-8293, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32785356

RESUMO

Hemorrhage remains one of the direct causes of high mortality. The development of ideal hemostatic materials with sound ability to deal with severe wound is urgent needed. Although starch-based hemostatic powder has been widely used, hydrous physiological environments severely hamper its binding to the target tissue, thereby limiting the effectiveness in hemostasis. Herein, inspired by mussel adhesive protein, a novel injectable tissue-adhesive hydrogel (St-Dopa hydrogel) composed of starch, succinic anhydride and dopamine was developed in situ by enzymatic crosslinking. The results show that St-Dopa hydrogels were intimately integrated with biological tissue and formed robust barriers to reduce blood loss. St-Dopa hydrogels exhibited superior capacity for in vitro and in vivo hemostasis as compared with chitin hydrogels. In addition to the ease of operation, St-Dopa hydrogels exhibited rapid sol-gel transition, porous microscopic morphology, good swelling ratio and biodegradability, tissue-like elastomeric mechanical properties and excellent cyto/hemo-compatibility. These results suggest that this newly developed St-Dopa hydrogel is a promising biological adhesive and hemostatic material.


Assuntos
Hemorragia/tratamento farmacológico , Hemostasia/efeitos dos fármacos , Hemostáticos/uso terapêutico , Hidrogéis/uso terapêutico , Amido/uso terapêutico , Adesivos Teciduais/uso terapêutico , Animais , Linhagem Celular , Dopamina/análogos & derivados , Dopamina/uso terapêutico , Dopamina/toxicidade , Módulo de Elasticidade , Hemostáticos/síntese química , Hemostáticos/toxicidade , Hidrogéis/síntese química , Hidrogéis/toxicidade , Masculino , Teste de Materiais , Camundongos , Porosidade , Coelhos , Amido/análogos & derivados , Amido/toxicidade , Anidridos Succínicos/química , Anidridos Succínicos/uso terapêutico , Anidridos Succínicos/toxicidade , Suínos , Adesivos Teciduais/síntese química , Adesivos Teciduais/toxicidade , Substâncias Viscoelásticas/síntese química , Substâncias Viscoelásticas/uso terapêutico , Substâncias Viscoelásticas/toxicidade
10.
J Toxicol Sci ; 45(5): 271-280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32404559

RESUMO

Environmental neurotoxins such as paraquat (PQ), manganese, and 1-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are associated with a higher risk of Parkinson's disease (PD). These parkinsonian toxins exert certain common toxicological effects on astroglia; however, their role in the regulatory functions of astroglial secretory proteins remains unclear. In a previous study, we observed that secretogranin II (SCG2) and secretogranin III (SCG3), which are important components of the regulated secretory pathway, were elevated in PQ-activated U118 astroglia. In the current study, we used the parkinsonian toxins dopamine (DA), active metabolite of MPTP (MPP+), MnCl2, and lipopolysaccharide (LPS) as inducers, and studied the potential regulation of SCG2 and SCG3. Our results showed that all the parkinsonian toxins except LPS affected astroglial viability but did not cause apoptosis. Exposure to DA, MPP+, and MnCl2 upregulated glial fibrillary acidic protein (GFAP), a marker for astrocyte activation, and stimulated the levels of several astrocytic-derived factors. Further, DA, MPP+, and MnCl2 exposure impeded astroglial cell cycle progression. Moreover, the expression of SCG3 was elevated, while its exosecretion was inhibited in astroglia activated by parkinsonian toxins. The level of SCG2 remained unchanged. In combination with our previous findings, the results of this study indicate that SCG3 may act as a cofactor in astrocyte activation stimulated by various toxins, and the regulation of SCG3 could be involved in the toxicological mechanism by which parkinsonian toxins affect astroglia.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cromograninas/fisiologia , Intoxicação por MPTP/complicações , Neurotoxinas/toxicidade , Doença de Parkinson Secundária/etiologia , Ciclo Celular/efeitos dos fármacos , Cloretos/efeitos adversos , Cloretos/toxicidade , Cromograninas/metabolismo , Dopamina/administração & dosagem , Dopamina/toxicidade , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Compostos de Manganês/efeitos adversos , Paraquat/toxicidade , Secretogranina II/metabolismo , Secretogranina II/fisiologia , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos
11.
Cells ; 8(8)2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426448

RESUMO

: Accumulative evidence indicated that the pathologically accumulated metal ions (iron species and Mn3+) and abnormally up-regulated monoamine oxidase B (MAOB) activity induced oxidation of endogenous dopamine (DA) can lead to mitochondria impairment, lysosome dysfunction, proteasome inhibition, and selective DA neuron vulnerability, which is implicated in the pathogenesis of Parkinson's disease (PD). The DA oxidation can generate deleterious reactive oxygen species (ROS) and highly reactive DA quinones (DAQ) to induce DA-related toxicity, which can be alleviated by DA oxidation suppressors, ROS scavengers, DAQ quenchers, and MAOB inhibitors. On the other hand, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Keap1 and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) anti-oxidative and proliferative signaling pathways play roles in anti-oxidative cell defense and mitochondria biogenesis, which is implicated in DA neuron protections. Therefore, agents with capabilities to suppress DA-related toxicity including inhibition of DA oxidation, scavenge of ROS, detoxification of DAQ, inhibition of MAOB, and modulations of anti-oxidative signaling pathways can be protective to DA neurons. Accumulative evidence shows that tea or coffee consumptions and smoking are related to deceased PD prevalence with unknown mechanisms. In this study, we investigate the protective capabilities of tea polyphenols and other PD relevant agents to inhibit DA-related toxicity and protect against environmental or genetic factors induced DA neuron degeneration in vitro and in vivo. We find that tea polyphenols can significantly suppress DA-related toxicity to protect DA neurons. The tea polyphenols can protect DA neurons via inhibition of DA oxidation, conjugation with DAQ, scavenge of ROS, inhibition of MAOB, and modulations of Nrf2-Keap1 and PGC-1α anti-oxidative signaling pathways. The tea polyphenols with more phenolic hydroxyl groups and ring structures have stronger protective functions. The protective capabilities of tea polyphenols is further strengthened by evidence that phenolic hydroxyl groups can directly conjugate with DAQ. However, GSH and other sulfhydyl groups containing agents have weaker capabilities to abrogate DA oxidation, detoxify ROS and DAQ and inhibit MAOB; whereas nicotine (NICO) and caffeine (CAF) can only modulate Nrf2-Keap1 and PGC-1α pathways to protect DA neurons weakly. The tea polyphenols are identified to protect against overexpression of mutant A30P α-synuclein (α-syn) induced DA neuron degeneration and PD-like symptoms in transgenic Drosophila. Based on achievements from current studies, the excellent and versatile protective capabilities of tea polyphenols are highlighted, which will contribute and benefit to future anti-PD therapy.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Doença de Parkinson , Polifenóis/farmacologia , Animais , Dopamina/análogos & derivados , Dopamina/toxicidade , Drosophila , Células HEK293 , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Extratos Vegetais , Chá
12.
Neuroscience ; 410: 1-15, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078686

RESUMO

The contribution of Dopamine (DA) to minimal hepatic encephalopathy (MHE) has been demonstrated. However, recent studies have revealed that cholesterol (CHO) treatment substantially increased the risk of dementia. The objectives of this study were to investigate whether CHO was induced by DA overload and its involvement in DA-induced cognitive impairment in MHE. Our study showed that DA treatment triggered CHO biosynthesis via the activation of JNK3/SREBP2 signaling pathway in primary cultured astrocytes. Conditioned media from DA-treated astrocytes increased CHO uptake by primary cultured neurons and disrupted synaptic formations; at the same time, inhibition of CHO synthesis and transportation from astrocytes diminished the disruption of synaptogenesis, which indicates the involvement of CHO in the perturbation of neural synaptogenesis in vitro. Secondary secretion of DA from primary cultured neurons was stimulated by CHO secreted from astrocytes. DA induced synergistic decreases of PPARγ/pERK/pCREB expressions in the presence of CHO in neurons, leading to synergistic synaptic impairment. Memory impairments were observed in MHE/DA-treated rats, which were partially rescued by atorvastatin (ATVS) treatment, confirming the involvement of CHO burden in vivo. Overall, our study suggests that DA overload triggers obvious CHO production from astrocytes. Excessive CHO in turn triggered neurons to secrete abundant DA and DA burden in combination with CHO overload elicit the cognitive decline and memory loss via PPARγ/ERK/CREB pathway in MHE.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Dopamina/toxicidade , Encefalopatia Hepática/metabolismo , Neurogênese/fisiologia , Sinapses/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Dopamina/administração & dosagem , Encefalopatia Hepática/patologia , Injeções Intraventriculares , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Neurogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/patologia
13.
Anal Chim Acta ; 1058: 146-154, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-30851848

RESUMO

A simple fluorescence turn on sensor for the detection of fluoride ion in totally aqueous medium has been developed by integrating boronic acid functionalized carbon quantum dot (BNSCQD) and dopamine. The intense emission of BNSCQD is quenched due to photoelectron transfer (PET) from BNSCQD to dopamine. A remarkable enhancement of emission intensity in presence of F- is achieved due to high reactivity of F- towards boron centre of the BNSCQD-dopamine complex and hence restricting PET between BNSCQD and dopamine. The LOD of our sensor is 0.7 pM. The sensor is not cytotoxic and could be utilised to trace fluoride level changes in human serum as well as in living cells.


Assuntos
Carbono/química , Dopamina/química , Fluoretos/sangue , Pontos Quânticos/química , Ácidos Borônicos/química , Ácidos Borônicos/toxicidade , Água Carbonatada/análise , Linhagem Celular Tumoral , Dentifrícios/análise , Dopamina/toxicidade , Fluorescência , Humanos , Limite de Detecção , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nitrogênio/química , Pontos Quânticos/toxicidade , Enxofre/química
14.
Neurotox Res ; 35(4): 898-907, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806984

RESUMO

The cytotoxicity of dopamine on cultured cells of neural origin has been used as a tool to explore the mechanisms of dopaminergic neurodegeneration in Parkinson's disease. In the current study, we have shown that dopamine induces a dose-dependent (10-40 µM) and time-dependent (up to 96 h) loss of cell viability associated with mitochondrial dysfunction and increased intra-cellular accumulation of α-synuclein in cultured SH-SY5Y cells. Dopamine-induced mitochondrial dysfunction and the loss of cell viability under our experimental conditions could be prevented by cyclosporine, a blocker of mitochondrial permeability transition pore, as well as the antioxidant N-acetylcysteine. Interestingly, the dopamine effects on cell viability and mitochondrial functions were significantly prevented by knocking down α-synuclein expression by specific siRNA. Our results suggest that dopamine cytotoxicity is mediated by α-synuclein acting on the mitochondria and impairing its bioenergetic functions.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Dopamina/toxicidade , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Ciclosporina , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
15.
Neurochem Res ; 43(12): 2313-2323, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30288644

RESUMO

Parkinson's disease is the second most common neurodegenerative disease that occurs due to cellular autophagy deficiency and the accumulation of alpha-synuclein in the dopaminergic neurons of the substantia nigra pars compacta (SNc) of the brainstem. The SMER28 (also known as 6-Bromo-N-prop-2-enylquinazolin-4-amine) is an autophagy inducer. In this study, the neuroprotective effects of SMER28 were evaluated on autophagy induction, antioxidant system activation, and microgliosis attenuation. The Parkinson's disease model was developed in the male Wistar rats by injection of 6-OHDA into the left striatum. Apomorphine-induced behavior assessment test and SNc cell counting were performed to investigate the neuroprotective effects of SMER28. This study examined the pharmacological roles of SMER28, especially by focusing on the autophagy (p62/ SQSTM1 and LC3II/LC3I ratio where LC3 is microtubule-associated protein 1A/1B-light chain 3), inhibiting free radicals, and activating the antioxidant system. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), glutathione (GSH), GSH/glutathione peroxidase (GPX), superoxide dismutase (SOD) activity and nuclear factor-erythroid 2-related factor-2 (Nrf2) were measured to evaluate the antioxidant activity of SMER28. Moreover, Iba-1 (ionized calcium binding adaptor molecule, indicating microgliosis) and tyrosine hydroxylase immunoreactivities were evaluated in the SNc. In the behavioral assessment, SMER28 (50 µg/kg) attenuated damages to the SNc dopaminergic neurons, characterized by improved motor function. The tissue observations revealed that SMER28 prevented the destruction of SNc neurons and attenuated microgliosis as well. It also reduced MDA and ROS production and increased GSH, GPX, SOD, and Nrf2 activities by inducing autophagy (decreasing p62 and increasing LC3II/LC3I ratio). Consequently, possibly with further studies, it can be considered as a drug for neurodegenerative diseases with proteinopathy etiology.


Assuntos
Compostos Alílicos/uso terapêutico , Autofagia/fisiologia , Estresse Oxidativo/fisiologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/prevenção & controle , Quinazolinas/uso terapêutico , Compostos Alílicos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Quinazolinas/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar
16.
Biochemistry ; 57(33): 5014-5028, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30025458

RESUMO

Amyloid formation of α-synuclein (α-Syn) and its familial mutations are directly linked with Parkinson's disease (PD) pathogenesis. Recently, a new familial α-Syn mutation (A53E) was discovered, associated with an early onset aggressive form of PD, which delays α-Syn aggregation. When we overexpressed wild-type (WT) and A53E proteins in cells, showed neither toxicity nor aggregate formation, suggesting merely overexpression may not recapitulate the PD phenotype in cell models. We hypothesized that cells expressing the A53E mutant might possess enhanced susceptibility to PD-associated toxicants compared to that of the WT. When cells were treated with PD toxicants (dopamine and rotenone), cells expressing A53E showed more susceptibility to cell death along with compromised mitochondrial potential and an increased production of reactive oxygen species. The higher toxicity of A53E could be due to more oligomers being formed in cells as confirmed by a dot blot assay using amyloid specific OC and A11 antibody and using an  in vitro aggregation study. The cellular model presented here suggests that along with familial mutation, environmental and other cellular factors might play a crucial role in dictating PD pathogenesis.


Assuntos
Apoptose/efeitos dos fármacos , Dopamina/toxicidade , Agregados Proteicos/genética , Rotenona/toxicidade , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Humanos , Cinética , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Mutação , Agregação Patológica de Proteínas/metabolismo , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/genética
17.
Neurobiol Dis ; 117: 82-113, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859868

RESUMO

The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 µM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.


Assuntos
Clorpirifos/toxicidade , Neurônios Dopaminérgicos/metabolismo , Inseticidas/toxicidade , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Fator de Transcrição STAT1/metabolismo , Animais , Linhagem Celular Transformada , Dopamina/metabolismo , Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Neurochem Int ; 118: 61-72, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29704589

RESUMO

Mitochondrial impairment is one of the most important hallmarks of Parkinson's disease (PD) pathogenesis. In this work, we wanted to verify the molecular basis of altered mitochondrial dynamics and disposal in Substantia nigra specimens of sporadic PD patients, by the comparison with two cellular models of PD. Indeed, SH-SY5Y cells were treated with either dopamine or 1-methyl-4-phenylpyridinium (MPP+) in order to highlight the effect of altered dopamine homeostasis and of complex I inhibition, respectively. As a result, we found that fusion impairment of the inner mitochondrial membrane is a common feature of both PD human samples and cellular models. However, the effects of dopamine and MPP+ treatments resulted to be different in terms of the mitochondrial damage induced. Opposite changes in the levels of two mitochondrial protein markers (voltage-dependent anion channels (VDACs) and cytochrome c oxidase subunit 5ß (COX5ß)) were observed. In this case, dopamine treatment better recapitulated the molecular picture of patients' samples. Moreover, the accumulation of PTEN-induced putative kinase 1 (PINK1), a mitophagy marker, was not observed in both PD patients samples and cellular models. Eventually, in transmission electron microscopy images, small electron dense deposits were observed in mitochondria of PD subjects, which are uniquely reproduced in dopamine-treated cells. In conclusion, our study suggests that the mitochondrial molecular landscape of Substantia nigra specimens of PD patients can be mirrored by the impaired dopamine homeostasis cellular model, thus supporting the hypothesis that alterations in this process could be a crucial pathogenetic event in PD.


Assuntos
Mitocôndrias/patologia , Doença de Parkinson/patologia , Substância Negra/patologia , 1-Metil-4-fenilpiridínio/farmacologia , 1-Metil-4-fenilpiridínio/toxicidade , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Dopamina/farmacologia , Dopamina/toxicidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
19.
J Nutr Biochem ; 54: 77-86, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29268122

RESUMO

Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to dopamine (DA) neuronal cell death. In this study, we examined the neuroprotective effects of natural antioxidants resveratrol and pinostilbene against age-related DAergic cell death and motor dysfunction using SH-SY5Y neuroblastoma cells and young, middle-aged, and old male C57BL/6 mice. Resveratrol and pinostilbene protected SH-SY5Y cells from a DA-induced decrease in cell viability. Dietary supplementation with resveratrol and pinostilbene inhibited the decline of motor function observed with age. While DA and its metabolites (DOPAC and HVA), dopamine transporter, and tyrosine hydroxylase levels remain unchanged during aging or treatment, resveratrol and pinostilbene increased ERK1/2 activation in vitro and in vivo in an age-dependent manner. Inhibition of ERK1/2 in SH-SY5Y cells decreased the protective effects of both compounds. These data suggest that resveratrol and pinostilbene alleviate age-related motor decline via the promotion of DA neuronal survival and activation of the ERK1/2 pathways.


Assuntos
Envelhecimento/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Resveratrol/farmacologia , Estilbenos/farmacologia , Envelhecimento/fisiologia , Animais , Linhagem Celular , Dopamina/metabolismo , Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
20.
Neurochem Int ; 117: 174-187, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28532681

RESUMO

Parkinsonian-like motor deficits in Huntington's Disease (HD) patients are associated with abnormal dopamine neurotransmission in the striatum. Dopamine metabolism leads to the formation of oxidized dopamine quinones that exacerbates mitochondrial dysfunction with production of reactive oxygen species (ROS) that eventually lead to neuronal cell death. We have previously shown that dopamine-induced oxidative stress triggers apoptotic cell death in dopaminergic neuroblastoma SH-SY5Y cells hyper-expressing the mutant polyQ Huntingtin (polyQ-Htt) protein. Dopamine toxicity was paralleled by impaired autophagy clearance of the polyQ-Htt aggregates. In this study, we found that Dopamine affects the stability and function of ATG4, a redox-sensitive cysteine-protein involved in the processing of LC3, a key step in the formation of autophagosomes. Resveratrol, a dietary polyphenol with anti-oxidant and pro-autophagic properties, has shown neuroprotective potential in HD. Yet the molecular mechanism through which Resveratrol can protect HD cells against DA is not known. Here, we show that Resveratrol prevents the generation of ROS, restores the level of ATG4, allows the lipidation of LC3, facilitates the degradation of polyQ-Htt aggregates and protects the cells from Dopamine toxicity. The present findings provide a mechanistic explanation of the neuroprotective activity of Resveratrol and support its inclusion in a therapeutic regimen to slow down HD progression.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Dopamina/toxicidade , Proteína Huntingtina/biossíntese , Fármacos Neuroprotetores/farmacologia , Fagossomos/efeitos dos fármacos , Resveratrol/farmacologia , Antioxidantes/farmacologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Humanos , Proteína Huntingtina/genética , Mutação/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fagossomos/metabolismo , Fagossomos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...